Graphene-based ion rectifier using macroscale geometric asymmetry

نویسندگان
چکیده

منابع مشابه

Geometric asymmetry driven Janus micromotors.

The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the ...

متن کامل

Autophoretic locomotion from geometric asymmetry.

Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different c...

متن کامل

Geometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets

Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...

متن کامل

Graphene ballistic nano-rectifier with very high responsivity

Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm(2) V(-1) s(-1) is achieved at ro...

متن کامل

Virtual Flux Based Direct Power Control on Vienna Rectifier

This paper proposes the virtual flux based direct power control for Vienna rectifier. No need for the input voltage sensors, the current regulation loop and PWM voltage modulation block along with the active and reactive power decoupling are some of the salient advantages of this method that make it suitable for controlling the conventional active rectifiers. However, due to the three-level nat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: APL Materials

سال: 2014

ISSN: 2166-532X

DOI: 10.1063/1.4894499